If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+159x-4800=0
a = 1; b = 159; c = -4800;
Δ = b2-4ac
Δ = 1592-4·1·(-4800)
Δ = 44481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(159)-\sqrt{44481}}{2*1}=\frac{-159-\sqrt{44481}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(159)+\sqrt{44481}}{2*1}=\frac{-159+\sqrt{44481}}{2} $
| 3-x-4=56 | | 5n+1=4n | | 3w+5=0 | | 3b+5b+b=180 | | m/8-6=5 | | 7x-85+4x-42=8x+45-12x+128 | | 9x+3.2=4.3 | | (n+4)(n-2)=36 | | 40+6x+11+4x=7x+41-3x-9,8 | | 8-4x=-35 | | 3a+8=6a+2 | | 3w+22=0 | | 3×-(2×-1)=7×-(3-5×)+(-x+24) | | 3w-6=0 | | 2n-11/5n=16 | | 5x-22+19+3x=x+32-4x-8,6 | | 3x-6+2x-2=-10x+12x-7+2x | | -2k+8=4 | | 7w-3w^2+6=0 | | 2x+6=9+5 | | 20+8x=7x-21 | | 8=b/4.5 | | 60=b/3 | | 5(4x-33)=-25 | | 6(3x+4)÷12=5 | | 3x+10=53 | | 100-7x+4x-42=53+x+33-6x | | 3j+16=45 | | 9^(x-4)+50=93 | | 6b+4=0 | | -6(q+-10)=96 | | 5÷3y=10 |